Headline Articles

Tetranuclear Mo_2Rh_2 Complexes Obtained from Reactions between Triple Cubane-Type Oxide Cluster $[(Cp^*Rh)_4Mo_4O_{16}]$ $(Cp^* = \eta^5-C_5(CH_3)_5)$ and Methanethiol: $[\{Cp^*Rh(\mu-SCH_3)_3MoO_2\}_2(\mu-O)]$ and $[\{Cp^*Rh(\mu-SCH_3)_3MoO\}_2(\mu-X)(\mu-Y)]$ (X,Y=O) and X=O,Y=S). Synthesis, X-Ray Structures, and Dynamic Behavior in Nonaqueous Media

Rimo Xi, Bateer Wang, Masaaki Abe, **,† Yoshiki Ozawa,†† Isamu Kinoshita,††† and Kiyoshi Isobe*,†††

Institute for Molecular Science, Department of Structural Molecular Science, The Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585

†Division of Chemistry, Graduate School of Science, Hokkaido University, Kita-ku, Sapporo 060-0810

††Department of Material Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297

†††Department of Material Science, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585

(Received March 25, 1999)

A new series of linear-type Mo_2Rh_2 tetranuclear complexes, $[\{Cp^*Rh^{III}(\mu\text{-}SCH_3)_3Mo^{VI}O_2\}_2(\mu\text{-}O)]$ (1), $[\{Cp^*Rh^{III}(\mu\text{-}SCH_3)_3Mo^VO\}_2(\mu\text{-}O)_2]$ (2), and $[\{Cp^*Rh^{III}(\mu\text{-}SCH_3)_3Mo^VO\}_2(\mu\text{-}O)(\mu\text{-}S)]$ (3), has been prepared from reactions of the triple cubane-type oxide cluster $[(Cp^*Rh)_4Mo_4O_{16}]\cdot 2H_2O$ with CH_3SH . These tetranuclear complexes have been characterized by elemental analysis, infrared, electronic, and 1H , ^{13}C , and ^{17}O NMR spectroscopies as well as X-ray analysis.

Complex **1** crystallizes in the monoclinic space group $P2_1/n$ (No. 14) with a=15.348(3), b=14.059(3), c=17.879(3) Å, $\beta=107.11(2)^\circ$, V=3690(1) ų, and Z=4. Complex **2** crystallizes in the monoclinic space group C2/c (No. 15) with a=25.334(4), b=21.271(2), c=17.831(3) Å, $\beta=129.70(5)^\circ$, V=7393(2) ų, and Z=8. Complex **3** crystallizes in the orthorhombic space group Pcab (No. 61) with a=16.902(3), b=26.631(3), c=16.855(2) Å, V=7587(3) ų, and Z=8. Complex **1** involves a nearly linear "O₂Mo^{VI}(μ -O)Mo^{VI}O₂" framework, to which two Cp*Rh^{III} units are linked by μ -SCH₃ ligands. Complexes **2** and **3** have an analogous tetranuclear Mo^V₂Rh^{III}₂ structure in which the Mo^V and Rh^{III} atoms are bridged by three μ -SCH₃ ligands. Complex **2** contains a doubly-bridged "OMo^V(μ -O)₂Mo^VO" framework with an Mo–Mo distance of 2.564(1) Å, while **3** contains a "OMo^V(μ -O)(μ -S)Mo^VO" framework with an Mo–Mo distance of 2.666(1) Å. Complexes **2** and **3** retain the tetranuclear structure but are fluxional in solution. The fluxional behaviors are due to intramolecular rotations of the "Cp*Rh(μ -SCH₃)" moieties on the trigonal planes of the octahedral Mo centers. Lineshape analyses of variable-temperature ¹H NMR spectra measured in C₆D₅Cl yield activation parameters of $\Delta H^{\ddagger}=+80.2$ kJ mol⁻¹, $\Delta S^{\ddagger}=+22.1$ J K⁻¹ mol⁻¹, and $\Delta G^{\ddagger}_{298}$ K = +73.6 kJ mol⁻¹ for the rotation in **2** and $\Delta H^{\ddagger}=+76.8$ kJ mol⁻¹, $\Delta S^{\ddagger}=+21.1$ J K⁻¹ mol⁻¹, and $\Delta G^{\ddagger}_{298}$ K = +70.5 kJ mol⁻¹ for that in **3**.

Organometallic complexes supported on polyoxoanion surfaces and those incorporated into polyoxoanion frameworks have been extensively studied from interest in their versatile solid-state structures, the unique reactivities, and homogeneous and heterogeneous catalysis. ^{1—3} During the course of our investigations of organometallic oxide clusters that contain both soft and hard multimetal centers, ⁴ we isolated and characterized triple cubane-type organometallic

oxide clusters, $[(Cp^*M)_4Mo_4^{VI}O_{16}]\cdot nH_2O$, where $M=Rh^{III}$ (n=2) and Ir^{III} $(n=0).^5$ It has been found that the triple cubane rhodium analog reacts with CH₃OH in the presence of p-hydroquinone to yield the incomplete double cubane cluster $[(Cp^*Rh)_2Mo_3O_9(\mu\text{-OCH}_3)_4]$ (Scheme 1a).⁶ In this reaction, the cubic M_4O_4 $(M=Rh^{III}$ or Mo^{VI}) framework is maintained and no drastic metal—oxygen bond rearrangements take place. The structure of the incomplete

Scheme 1.

cubane cluster suggests that CH_3OH molecules attack the bridging oxygens of $[(Cp^*Rh)_2Mo_4O_{16}]$ to remove formally the " $(Cp^*Rh)_2MoO_7$ " part from its framework.⁶ On the other hand, even under mild reaction conditions, 1,2-benzenedithiol induces a complete reconstruction of the cluster framework to separate the organorhodium and oxide parts with formation of $[(Cp^*Rh)_2(\mu(S)-1,2-C_6H_4S_2-S,S')_2]$ (Scheme 1b).⁷

In an extension of our study to the reaction using CH₃SH as the substrate, we have found that the transformation of the framework of the triple cubane cluster varies with reaction conditions such as solvent, reaction temperature, and the concentrations of the cluster and thiol as described in our communications^{8,9} and note.¹⁰ The reaction in CH₃CN in the presence of a high concentration of CH₃SH produces $[(Cp^*Rh)_2(\mu-SCH_3)_3]_4[Mo_8O_{26}]^{10}$ and $[(Cp^*Rh)_2 (\mu$ -SCH₃)₃]₂[Mo₆O₁₉]¹¹ in which the organorhodium and oxomolybdate moieties are completely separated. The reactions in CH₂Cl₂ at room temperature, in CH₃OH using the vapor of CH₃SH at room temperature, and in CH₃OH under refluxing conditions give the Mo₂Rh₂ tetranuclear complexes of $[\{Cp^*Rh^{III}(\mu-SCH_3)_3Mo^{VI}O_2\}_2(\mu-O)]$ (1),⁸ $[\{Cp^*Rh^{III}(\mu - SCH_3)_3Mo^VO\}_2(\mu - O)_2]$ (2),⁹ and $[\{Cp^*Rh^{III}(\mu-SCH_3)_3Mo^VO\}_2(\mu-O)(\mu-S)]$ (3), 9 respectively, together with the octa- and hexa- molybdates as main products. In this paper, we will describe the full account of (i) the reactions of [(Cp*Rh)₄Mo₄O₁₆] with CH₃SH to give the Mo₂Rh₂ tetranuclear complexes of 1, 2, and 3, and (ii) the structural and bonding study of these products based on the results of X-ray analysis, and (iii) the elucidation of the fluxional behaviors of 2 and 3 using complete line-shape analyses of variable-temperature ¹H NMR spectra. The ¹⁷Oenriched analogs were also prepared and characterized by ¹⁷O NMR spectroscopy.

Experimental

Materials. The starting compounds of [{Cp*RhCl(μ-Cl)}₂] ¹² and [(Cp*Rh)₄Mo₄O₁₆]·2H₂O ⁵ were prepared according to the literature methods. The following chemicals were purchased from commercial sources and used without further purification: RhCl₃·3H₂O (Shiga Kikinzoku), Na₂MoO₄·2H₂O (Wako), pentamethylcyclooctadiene (Kanto Kagaku), CH₃SH (30% in CH₃OH) (Nacalai), and 10% ¹⁷O-enriched water (CEA). The solvents of CH₃OH and CH₂Cl₂ were distilled under Ar. Other solvents were used as received.

Preparation of Tetranuclear Mo₂Rh₂ Complexes. [{Cp*Rh- $(\mu - SCH_3)_3MoO_2\}_2(\mu - O)$ (1). To a solution of CH₃SH (3.0 cm³: 30% in CH₃OH, 15 mmol) in CH₂Cl₂ (10 cm³) was added dropwise a solution of $[(Cp^*Rh)_4Mo_4O_{16}]\cdot 2H_2O^5$ (0.35 g, 0.21 mmol) in CH₂Cl₂ (15 cm³) at room temperature. After the mixture was stirred for 30 min, the solvent was evaporated. The orange residue was dissolved in a minimum quantity of CH2Cl2 and the insoluble yellow solid of polyoxometalates¹³ was removed by filtration. The filtrate was treated with a column chromatography of silica gel with CH₂Cl₂/(CH₃)₂CO (acetone) (15/1, v/v) as an eluent. The first fraction was evaporated to give 1 as an orange solid in a 20% yield (90 mg). Complex 1 was also obtained by using CH₃OH as the solvent, but in a much lower yield. Single crystals suitable for X-ray analysis were grown from a CH₃CN solution at room temperature. Anal. Calcd for C₂₆H₄₈Mo₂O₅Rh₂S₆: C, 30.30; H, 4.69%. Found: C, 30.56; H, 4.68%. Negative ion FAB MS (NBA as a matrix): the most intense peak, m/z = 1030 ([M]⁻). IR (KBr pellet, cm⁻¹, 1100—700 cm⁻¹ region) ν (Mo–O_t): 1023 (m), 951 (m), 919 (s), 891 (s); ν (Mo–O_b): 750 (s) (O_t and O_b represent the terminal and the bridging oxygen atoms, respectively). ¹H NMR (CDCl₃, 23 °C, δ vs. TMS) δ = 2.22 (s, br, SCH₃), 2.19 (s, br, SCH₃), 2.17 (s, br, SCH₃), 2.03 (s, br, SCH₃), 1.95 (s, br, SCH₃), 1.78 (s, 30H, $C_5(CH_3)_5$). ¹³C{¹H} NMR (CDCl₃, 23 °C, δ vs. TMS) δ = 97.3 $(d, J_{Rh-C} = 6.1 \text{ Hz}, C_5(CH_3)_5), 15.3 \text{ (s, S}_{CH_3}), 13.8 \text{ (s, S}_{CH_3}), 13.6$ $(s, SCH_3), 12.9 (s, SCH_3), 9.4 (s, C_5(CH_3)_5)$. Electronic spectrum $(CH_2Cl_2, 25 \, ^{\circ}C) \lambda_{max} (\varepsilon/M^{-1} cm^{-1}), ca. 370 (sh), 300 (3.3 \times 10^4),$ $246 (4.4 \times 10^4) (M = \text{mol dm}^{-3}, \text{ sh} = \text{shoulder})$. The second fraction of the chromatography gave complex 2 (yield, 40 mg: 9%, see below).

 $[{Cp^*Rh(\mu-SCH_3)_3MoO}_2(\mu-O)_2]$ (2). A solution of [(Cp*Rh)₄Mo₄O₁₆]·2H₂O ⁵ (0.60 g, 0.37 mmol) in CH₃OH (60 cm³) was stirred at room temperature and was allowed to react gradually with the vapor of CH₃SH (30 cm³, 1.5×10² mmol) introduced into a reaction flask through a glass tube with glass wool. After one week, red crystals of 2 and yellow orange solid of polyoxometalates¹³ were deposited. The red crystals were collected by filtration and hand, washed with diethyl ether, and dried in vacuo. Yield, 140 mg (19%). The deposited red crystals were used for Xray analysis. Anal. Calcd for C₂₆H₄₈Mo₂O₄Rh₂S₆: C, 30.78; H, 4.77%. Found: C, 30.96; H, 4.76%. Negative ion FAB MS (NBA as a matrix): the most intense peak, m/z = 1014 ([M]⁻). IR (KBr pellet, cm⁻¹, 1100—700 cm⁻¹ region) ν (Mo–O_t): 940 (s), 923 (m); ν (Mo–O_b): 724 (m), 708 (m), 446 (m). ¹H NMR (CDCl₃, 23 °C, δ vs. TMS) δ = 2.54 (s, 6H, SC H_3), 2.20 (s, 6H, SC H_3), 1.81 (s, 30H, $C_5(CH_3)_5$), 1.60 (s, 6H, SCH_3). $^{13}C\{^1H\}$ NMR (CDCl₃, 23 °C, δ vs. TMS) $\delta = 96.9$ (d, $J_{Rh-C} = 6.1$ Hz, C_5 (CH₃)₅), 17.3 (s, SCH₃), 13.0 (s, SCH₃), 12.5 (s, SCH₃), 9.4 (s, C₅(CH₃)₅). Electronic spectrum (CH₂Cl₂, 25 °C) λ_{max} ($\varepsilon/\text{M}^{-1}$ cm⁻¹), 370 (sh), 330 (sh), 310 (sh), 295 (4.3×10^4) , 249 (5.5×10^4) .

 $[{Cp*Rh(\mu-SCH_3)_3MoO}_2(\mu-O)(\mu-S)]$ (3). A solution of [(Cp*Rh)₄Mo₄O₁₆]·2H₂O ⁵ (0.20 g, 0.12 mmol) in CH₃OH (20 cm³) was added to a solution of CH₃SH (5.0 cm³, 25 mmol). The mixture was refluxed for 1 h under an Ar atmosphere. The mixture was cooled down to room temperature and the resulting yellow solid of polyoxometalates¹³ was removed by filtration. The filtrate was evaporated to dryness to leave an orange residue. The residue was dissolved in a small amount of CH₂Cl₂, and it was subjected to a column chromatography of silica gel with elution by CH₂Cl₂/(CH₃)₂CO (15/1, v/v). An orange solid 3 was isolated from the major orange band on the column. Yield, 44 mg (17%). Single crystals of 3 suitable for X-ray analysis were grown from a CH₂Cl₂ solution at room temperature. Anal. Calcd for C₂₆H₄₈Mo₂O₃Rh₂S₇: C, 30.30; H, 4.69%. Found: C, 30.04; H, 4.56%. Negative ion FAB MS (NBA as a matrix): the most intense peak, $m/z = 1030 \text{ ([M]}^-)$. IR (KBr pellet, cm⁻¹, 1100— 700 cm⁻¹ region) ν (Mo–O_t): 948 (sh), 927 (s); ν (Mo–O_b): 708 (m); ν (Mo–S_b): 494 (m). ¹H NMR (CDCl₃, 23 °C, δ vs. TMS) $\delta = 2.60$ (s, 3H, SCH₃), 2.51 (s, 3H, SCH₃), 2.47 (s, 3H, SCH₃), 2.27 (s, 3H, SCH₃), 1.80 (s, 30H, C₅(CH₃)₅), 1.57 (s, 3H, SCH₃), 1.55 (s, 3H, SC H_3). ¹³C $\{^1H\}$ NMR (CDCl₃, 23 °C, δ vs. TMS) $\delta = 96.8$ (d, $J_{Rh-C} = 6.1$ Hz, $C_5(CH_3)_5$), 18.7 (s, SCH₃), 17.5 (s, SCH₃), 16.4 (s, SCH₃), 15.0 (s, SCH₃), 13.6 (s, SCH₃), 12.8 (s, SCH₃), 9.4 (s, C₅(CH₃)₅). Electronic spectrum (CH₂Cl₂, 25 °C) λ_{max} ($\varepsilon/\text{M}^{-1}$ cm⁻¹), 370 (sh), 330 (sh), 294 (3.1×10⁴), 256 (4.8×10^4) .

Reaction of 1 with CH₃SH. A solution of complex **1** (0.15 g, 0.15 mmol) in CH₂Cl₂ (10 cm³) was combined with a solution of CH₃SH (0.5 cm³, 2.5 mmol) in CH₃OH (10 cm³), and the mixture was refluxed for 12 h. The resultant solution was cooled down to room temperature and the solvent was removed by evaporation. The residue was dissolved in a minimum amount of CH₂Cl₂ and the insoluble material of polyoxometalates¹³ was filtered off. The filtrate was subjected to silica gel column chromatography with CH₂Cl₂/(CH₃)₂CO (15/1, v/v) as an eluent. The first and the second fractions gave complexes **3** and **2**, respectively. Yield: complex **2**, 35 mg (24%); complex **3**, 30 mg (20%).

¹⁷O-Enrichment Procedures. [(Cp*Rh)₄Mo₄(¹⁷O)₁₆]·2H₂¹⁷-O. A suspension of Na₂MoO₄·2H₂O (1.40 g, 5.79 mmol) in 10% H₂¹⁷O (1.5 cm³) was stirred at 40 °C for 2 h under an Ar atmosphere. To the resulting solution were added [{Cp*RhCl-(μ-Cl)}₂] (1.00 g, 1.62 mmol) and H₂O (1.5 cm³), and then the mixture was vigorously stirred at 90 °C for 10 h. An orange residue was obtained by evaporation of the solvent, and it was extracted with CH₂Cl₂ (150 cm³). The extract was dried over Na₂SO₄ for 12 h. The ¹⁷O-enriched sample, [(Cp*Rh)₄Mo₄(¹⁷O)₁₆]·2H₂¹⁷O, was obtained in 73% yield (based on the Rh atom, 970 mg) by evaporation of the solvent.

¹⁷O-Enriched Samples of [{Cp*Rh(μ-SCH₃)₃Mo¹⁷O₂}₂ (μ-¹⁷O)] (1'), [{Cp*Rh(μ-SCH₃)₃Mo¹⁷O}₂(μ-¹⁷O)₂] (2'), and [{Cp*Rh(μ-SCH₃)₃Mo¹⁷O}₂(μ-¹⁷O)(μ-S)] (3'). To a solution of CH₃SH (3.0 cm³, 15 mmol) in CH₂Cl₂ (10 cm³) was added a solution of ¹⁷O-enriched [(Cp*Rh)₄Mo₄¹⁷O₁₆]·2H₂O (0.20 g, 0.12 mmol), in CH₂Cl₂ (15 cm³) at room temperature. After the mixture was stirred for 30 min, the solvent was removed by evaporation, and the residue was treated with column chromatography of silica gel using a mixture of CH₂Cl₂/(CH₃)₂CO (15/1, v/v) as an eluent. Complexes 1' and 2' were obtained from the first (yield: 53 mg, 21%) and the second fraction (yield: 32 mg, 13%), respectively, after evaporation of the solvent. Complex 3' was obtained by a similar manner to that for 3 (yield: 40 mg, 16%).

Elemental analysis and mass spectral mea-Measurements. surements were performed at the Chemical Material Center in the Institute for Molecular Science and the Chemical Analysis Service Laboratory in Osaka City University. Infrared spectra were obtained with the KBr method on a Perkin Elmer 1600 series FT-IR spectrophotometer. Negative FAB mass spectra were measured with a Shimadzu/Kratos CONCEPT 1S mass spectrometer. Absorption spectra were recorded on a Hitachi U-3400 spectrophotometer. ¹H (400.0 MHz), ¹³C{¹H} (100.5 MHz), and ¹⁷O (54.2 MHz) NMR spectra were obtained in a JEOL GX-400 NMR spectrometer equipped with a variable-temperature controller. Samples were allowed to stand for at least ten minutes before spectra were recorded at desired temperatures, in order to get their equilibrium states. Chemical shifts were referenced to TMS for ¹H and ¹³C{¹H} NMR spectra. In the case of ¹⁷O NMR, chemical shifts were referenced to D₂O externally by the sample replacement method. Typical ¹⁷O spectral parameters are, the spectrometer frequency = 54.2 MHz, the pulse delay = $100 \mu s$, the predelay = 0.2 ms, and the pulse width = $7.5 \mu s$.

X-Ray Structural Determinations. $[\{Cp^*Rh(\mu-SCH_3)\}_3]$ MoO_2 }₂(μ -O)] (1). An orange prismatic single crystal of 1 was mounted on a Rigaku AFC-5 four-circle diffractometer. A total of 11637 reflections were collected at 25 °C with graphitemonochromated Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å) using the θ –2 θ scan technique in the $2^{\circ} < 2\theta < 60^{\circ}$ range. The cell dimensions were determined by least-squares fitting of 25 centered reflections $(25^{\circ} < 2\theta < 30^{\circ})$. Three standard reflections measured periodically throughout data collection revealed negligible decay for all three complexes. The intensity data were corrected for Lorentzpolarization factors and the absorption effect (numerical Gaussian integration method). The structure was solved by Patterson methods using SHELXS-8614a and refined with a block-diagonal least squares technique using UNICS III^{14b} program on a HITAC M680 computer at the Institute for Molecular Science Computer Center. Space group $P2_1/n$ was confirmed by subsequent successful structural solution and refinement. Hydrogen atoms were not included in the refinement.

[{Cp*Rh(μ -SCH₃)₃MoO}₂(μ -O)₂] (2). A red prismatic single crystal of 2 was mounted on a Rigaku AFC-5 four-circle diffractometer. A total of 11088 reflections were collected at 25 °C with graphite-monochromated Mo $K\alpha$ radiation (λ = 0.71073 Å) using the θ -2 θ scan technique in the 2° < 2 θ < 60° range. The cell dimensions were determined by least-squares fitting of 25 centered reflections (25° < 2 θ < 30°). The intensity data were corrected for Lorentz-polarization factors and the absorption effect. The structure solution and refinement were carried out by the same method as that for 1.

[{Cp*Rh(μ -SCH₃)₃MoO}₂(μ -O)(μ -S)] (3). A red prismatic single crystal of 3 was mounted on a Rigaku AFC-5 four-circle diffractometer. A total of 9679 reflections were collected at 25 °C with graphite-monochromated Mo $K\alpha$ radiation ($\lambda=0.71073$ Å) using the θ -2 θ scan technique in the 2° < 2 θ < 55° range. The cell dimensions were determined by least-squares fitting of 25 centered reflections (25° < 2 θ < 30°). The structure solution and refinement were carried out by the same method as that for 1.

Crystallographic data of the above three complexes have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication and the deposition numbers CCDC 128211, 128212, and 128213

Line-Shape Analysis of Variable-Temperature ¹H NMR Spectra. Line-shape analysis of variable-temperature ¹H NMR spectra

for complexes 2 and 3 was carried out using a computer program based on a modified Bloch equation with the three-site exchange model.¹⁵ Rate constants were determined by visual fitting of observed and calculated spectra. Activation parameters were calculated from the Eyring plots.

Results and Discussion

Reaction of $[(Cp^*Rh)_4Mo_4O_{16}]\cdot 2H_2O$ with CH₃SH. Three linear-type Rh₂Mo₂ tetranuclear complexes, $[\{Cp^*-Rh(\mu-SCH_3)_3MoO_2\}_2(\mu-O)]$ (1), $[\{Cp^*Rh(\mu-SCH_3)_3-MoO\}_2(\mu-O)_2]$ (2), and $[\{Cp^*Rh(\mu-SCH_3)_3MoO\}_2(\mu-O)_2(\mu-S)]$ (3) are obtained from the reactions of the triple cubane-type cluster, $[(Cp^*Rh)_4Mo_4O_{16}]\cdot 2H_2O_5$ with excess CH₃SH in organic solvents. The formations of the singly-bridged μ -oxo complex 1 (20% yield) and doubly-bridged di(μ -oxo) complex 2 (9% yield) are observed in CH₂Cl₂ under the relatively mild conditions, while doubly-bridged $(\mu$ -oxo)(μ -sulfido) complex 3 is obtained

when $[(Cp^*Rh)_4Mo_4O_{16}]\cdot 2H_2O$ is reacted with CH_3SH at higher temperature (refluxing CH_3OH). These results indicate that the reactions with CH_3SH cause more drastic rearrangements of the cubic framework than that with CH_3OH . Although the reactions with CH_3SH also produced the byproducts of the previously characterized octamolybdate $[(Cp^*Rh)_2(\mu\text{-}SCH_3)_3]_4[Mo_8O_{26}]^{10}$ and hexamolybdate $[(Cp^*Rh)_2(\mu\text{-}SCH_3)_3]_2[Mo_6O_{19}]^{11}$ where the Rh and Mo moieties are separated, its affinity for the Rh atom seems to be weaker than that of $1,2\text{-}C_6H_4(SH)_2$ which gives quantitatively the completely rearranged product of $[(Cp^*Rh)_2(\mu(S)-1,2\text{-}C_6H_4S_2\text{-}S,S')_2]$, since the reaction of CH_3SH gives the CH_2Mo_2 tetranuclear complexes of CH_3M under certain reaction conditions, which are severer than those employed in the reaction of $1,2\text{-}C_6H_4(SH)_2$.

Lower yields of the tetranuclear complexes, 1—3, are due to the simultaneous formations of the octamolybdate and hexamolybdate. The reaction sequence is shown in

Scheme 2. We propose that these tetranuclear complexes are mainly formed through two steps (Steps I and II) which are described as Eqs. 1 and 2, where complex 1 is a key intermediate. The first step involves the destruction of the triple cubane core by CH_3SH , followed by the reconstruction into the singly-bridged tetranuclear of 1 (Eq. 1).

$$[(Cp^*Rh^{III})_4Mo_4^{VI}O_{16}]\cdot 2H_2O + 12CH_3SH$$

$$\longrightarrow 2[\{Cp^*Rh^{III}(\mu\text{-SCH}_3)_3Mo^{VI}O_2\}_2(\mu\text{-}O)](1) + 8H_2O \quad (1)$$

The second step is the formation of doubly-bridged species 2 and 3 through the reaction of 1 with CH₃SH which plays a role as a reductant of Mo^{VI} in 1 to Mo^V in 2 and 3 and as a sulfide source for 3 (Eq. 2).¹⁶

$$2[\{Cp^*Rh^{III}(\mu-SCH_3)_3Mo^{VI}O_2\}_2(\mu-O)](1) + 6CH_3SH$$

$$\longrightarrow [\{Cp^*Rh^{III}(\mu-SCH_3)_3Mo^{V}O\}_2(\mu-O)_2](2)$$

$$+[\{Cp^*Rh^{III}(\mu-SCH_3)_3Mo^{V}O\}_2(\mu-O)(\mu-S)](3)$$

$$+2(CH_3S)_2 + (CH_3)_2S + 3H_2O$$
 (2)

This scheme is supported by the observation that 2 and 3 can be generated by the reaction of complex 1 with CH₃SH. Complex 3 was also detected in a prolonged reaction of 2 with CH₃SH. The octamolybdate¹⁰ and hexamolybdate¹¹ salts are generated from both the triple cubane cluster and complex 1. The core rearrangements by CH₃SH may be explained by the high reactivity of the soft sulfur atom in CH₃SH towards the metal ions (particularly the Rh^{III} atoms) in the triple cubane cluster. In addition, the more acidic nature of CH₃SH,¹⁷ compared with CH₃OH, would accelerate protonation to the bridging oxygen sites, leading to the easier metal–oxygen bond cleavage in the cluster.

Of particular interest in the formation of 3 is that the bridging sulfur atom is introduced by the cleavage of the S-C bond, similar to that seen in the desulfurization process. ¹⁸ It

is noted that the doubly sulfido-bridged analogs or those having terminal sulfur ligand(s) have not been detected under the present conditions. Although many dinuclear molybdenum complexes having the frameworks of " O_2Mo^{VI} - $(\mu$ -O)Mo^{VI}O₂", " $OMo^V(\mu$ -O)₂Mo^VO", and " $OMo^V(\mu$ -O)- $(\mu$ -S)Mo^VO" have been prepared to date, 19 the complexes with additional metal complex groups on their frameworks like **1**—**3** are rare except for the cubane-type clusters 19e and [{(tiptacn)MoO(μ -O)₂}₂Mo(bpy)](PF₆)₂ (tiptacn = 1, 4, 7-triisopropyl-1, 4, 7-triazacyclononane)²⁰ and several other oligomeric complexes 19i based on the " $OMo^V(\mu$ -O)₂Mo^VO" cores.

Description of Structures. The tetranuclear structures of [{Cp*Rh(μ -SCH₃)₃MoO₂}₂(μ -O)] (1), [{Cp*Rh(μ -SCH₃)₃MoO}₂(μ -O)₂] (2), and [{Cp*Rh(μ -SCH₃)₃MoO}₂(μ -O)(μ -S)] (3), have been unambiguously determined by single-crystal X-ray crystallography. A summary of crystallographic data is given in Table 1 and selected interatomic distances and angles are presented in Table 2. Other structural data are described in Supporting Information. The ORTEP drawings of 1, 2, and 3 are displayed in Figs. 1, 2, and 3, respectively.

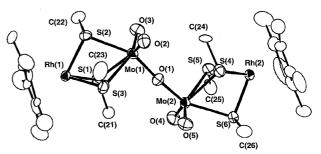


Fig. 1. An ORTEP drawing (50% ellipsoids) of [$\{Cp^*Rh-(\mu-SCH_3)_3MoO_2\}_2(\mu-O)$] (1) with atomic labeling scheme.

Table 1. Crystallographic Data and Refinement Parameters for 1, 2, and 3

	1	2	3
Formula	C ₂₆ H ₄₈ Mo ₂ O ₅ Rh ₂ S ₆	C ₂₆ H ₄₈ Mo ₂ O ₄ Rh ₂ S ₆	C ₂₆ H ₄₈ Mo ₂ O ₃ Rh ₂ S ₇
F_{w}	1030.72	1014.72	1030.78
Cryst system	Monoclinic	Monoclinic	Orthorhombic
Space group	$P2_1/n$ (No. 14)	C2/c (No. 15)	Pcab (No. 61)
Temp/°C	25	25	25
a/Å	15.348(3)	25.334(4)	16.902(3)
b/Å	14.059(3)	21.271(2)	26.631(3)
c/Å	17.879(3)	17.831(3)	16.855(2)
β /deg	107.11(2)	129.70(5)	90
V/Å ³	3690(1)	7393(2)	7587(3)
Z	4	8	8
Cryst dimens/mm ³	$0.40 \times 0.35 \times 0.25$	$0.48 \times 0.38 \times 0.21$	$0.43 \times 0.33 \times 0.23$
$\lambda(\text{Mo}K\alpha)/\text{Å}$	0.71073	0.71073	0.71073
$d_{\rm calcd}/{\rm gcm}^{-3}$	1.855	1.823	1.805
μ/cm^{-1}	18.73	18.67	18.70
Data colled	11637	11088	9679
Independent data	2378	8807	5015
$R^{a)}$	0.064	0.045	0.044
$R_{\rm w}^{\rm b)}$	0.065	0.090	0.055

a) $R = \sum ||F_0| - |F_c|| / \sum |F_0|$. b) $R_w = [\sum |w(|F_0| - |F_c|)^2) / \sum |w|F_0|^2]^{1/2}$; $w^{-1} = \sigma(F_0)^2 + (0.020F_0)^2$.

Table 2. Selected Interatomic Distances (Å) and Angles (°) of 1, 2, and 3

Complex 1				Rh(1)-S(3)	2.359(3)		2.376(3)
	Distanc	* *		$C(21)\cdots O(1)$	3.23(2)	$C(22)\cdots O(4)$	3.27(1)
$Rh(1)\cdots Mo(1)$	3.520(3)	$Rh(2)\cdots Mo(2)$	3.526(3)	$C(23)\cdots O(2)$	3.05(1)	$C(24)\cdots O(4)$	3.07(2)
Mo(1)-O(1)	1.91(1)	Mo(2)-O(1)	1.86(1)	$C(25)\cdots O(3)$	2.99(1)	$C(26)\cdots O(1)$	3.08(1)
Mo(1)-O(2)	1.70(2)	Mo(2)-O(4)	1.71(2)		Angles	(dea)	
Mo(1)-O(3)	1.70(2)	Mo(2)-O(5)	1.66(2)	S(1) Mo(1) S(2)	Angles		70.94(9)
Rh(1)-S(1)	2.359(6)	Rh(2)-S(4)	2.362(6)	S(1)-Mo(1)-S(2)	70.38(8)	S(4)-Mo(2)-S(5)	70.84(8)
Rh(1)-S(2)	2.327(6)	Rh(2) - S(5)	2.362(7)	S(1)-Mo(1)-S(3)	71.59(9)	S(4)-Mo(2)-S(6)	71.69(8)
Rh(1)-S(3)	2.348(7)	Rh(2)-S(6)	2.338(6)	S(2)–Mo(1)–S(3)	75.20(6)	S(5)-Mo(2)-S(6)	74.31(6)
Mo(1)-S(1)	2.689(7)	Mo(2)-S(4)	2.720(7)	O(1)- $Mo(1)$ - $O(4)$	93.5(2)	O(1)- $Mo(2)$ - $O(4)$	94.0(2)
Mo(1)-S(2)	2.554(6)	Mo(2)-S(5)	2.682(6)	O(1)- $Mo(1)$ - $O(2)$	109.6(3)	O(1)- $Mo(2)$ - $O(3)$	109.2(3)
Mo(1)-S(3)	2.691(7)	Mo(2)-S(6)	2.553(6)	C1 2			
$C(23)\cdots O(2)$	3.12(3)	$C(25)\cdots O(4)$	3.08(3)	Complex 3	Dist	()	
$C(22)\cdots O(3)$	3.02(3)	$C(26)\cdots O(5)$	2.96(3)	N. (1) N. (0)	Distance	es (A)	
		, , , ,	• •	Mo(1)–Mo(2)	2.666(1)	D1 (0) 14 (0)	2.455(1)
15 (1) 0(1) 15 (2)	Angles	(deg)		$Rh(1)\cdots Mo(1)$	` '	$Rh(2)\cdots Mo(2)$	3.477(1)
Mo(1)-O(1)-Mo(2)				Mo(1)–S(1)		Mo(2)–S(4)	2.734(2)
S(1)-Mo(1)-S(2)	70.9(2)	S(4)-Mo(2)-S(5)	69.3(2)	Mo(1)-S(2)	` '	Mo(2)-S(5)	2.589(2)
S(1)-Mo(1)- $S(3)$	69.7(2)	S(4)-Mo(2)-S(6)	70.5(2)	Mo(1)-S(3)	` ,	Mo(2)-S(6)	2.556(2)
S(2)-Mo(1)-S(3)	70.7(2)	S(5)-Mo(2)-S(6)	71.9(2)	Mo(1)-O(1)	` ,	Mo(2)-O(1)	1.948(6)
O(1)- $Mo(1)$ - $O(2)$	104.4(8)	O(1)- $Mo(2)$ - $O(4)$	105.8(8)	Mo(1)-S(7)	` '	Mo(2)-S(7)	2.327(2)
O(1)- $Mo(1)$ - $O(3)$	105.0(7)	O(1)- $Mo(2)$ - $O(5)$	104.3(7)	Mo(1)-O(2)	` '	Mo(2)-O(3)	1.689(6)
O(2)- $Mo(1)$ - $O(3)$	105.4(8)	O(4)-Mo(2)-O(5)	107.0(8)	Rh(1)-S(1)	(/	Rh(2) - S(4)	2.362(2)
				Rh(1)-S(2)	2.370(3)		2.360(2)
Complex 2		_		Rh(1)-S(3)	2.368(2)	Rh(2) - S(6)	2.379(2)
	Distanc	es (Å)		$C(21)\cdots O(1)$	3.14(1)	$C(22)\cdots S(7)$	3.37(1)
Mo(1)– $Mo(2)$	2.564(1)			$C(23)\cdots O(2)$	3.01(1)	$C(24)\cdots S(7)$	3.41(2)
$Rh(1)\cdots Mo(1)$	3.466(2)	$Rh(2)\cdots Mo(2)$	3.471(1)	$C(25)\cdots O(3)$	3.04(1)	$C(26)\cdots O(1)$	3.05(1)
Mo(1)-S(1)	2.736(3)	Mo(2)-S(4)	2.704(3)		Angles	(deg)	
Mo(1)-S(2)	2.569(2)	Mo(2)-S(5)	2.615(3)	S(1) Mo(1) S(2)	Angles		60 79(7)
Mo(1)-S(3)	2.583(3)	Mo(2)-S(6)	2.548(2)	S(1)-Mo(1)-S(2)	70.78(8)	S(4)-Mo(2)-S(5)	69.78(7)
Mo(1)-O(1)	1.938(5)	Mo(2)-O(1)	1.919(4)	S(1)-Mo(1)-S(3)	71.01(7)	S(4)-Mo(2)-S(6)	70.44(7)
Mo(1)-O(4)	1.948(5)	Mo(2)-O(4)	1.951(5)	S(2)-Mo(1)-S(3)	74.73(8)	S(5)-Mo(2)-S(6)	75.98(7)
Mo(1)-O(2)	1.704(10)	Mo(2)-O(3)	1.703(9)	O(1)- $Mo(1)$ - $S(7)$	98.4(2)	O(1)-Mo(2)-S(7)	98.3(2)
Rh(1)-S(1)	2.351(2)	Rh(2)-S(4)	2.353(2)	O(1)-Mo(1)-O(2)	106.8(3)	O(1)–Mo(2)–O(3)	107.5(3)
Rh(1)-S(2)	2.391(3)	Rh(2) - S(5)	2.370(3)	O(2)-Mo(1)-S(7)	107.6(2)	O(3)-Mo(2)-S(7)	107.3(2)

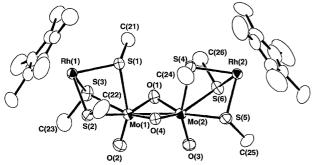


Fig. 2. An ORTEP drawing (50% ellipsoids) of [{Cp*Rh- $(\mu$ -SCH₃)₃MoO}₂(μ -O)₂] (2) with atomic labeling scheme.

Molecular Structure of 1. As seen in Fig. 1, complex **1** consists of a singly oxo-bridged dioxodimolybdenum-(VI) core $O_2MO^{VI}(\mu-O)MO^{VI}O_2$ and two Cp^*Rh fragments that are linked to the Mo centers by three μ -SCH₃ bridges. The geometry of two " $Cp^*Rh(\mu-SCH_3)_3MOO_2$ " groups takes a transoid configuration around the nearly linear Mo– $(\mu-O)$ –Mo axis (175(1)°), which would be caused by steric crowding of the two bulky moieties. Such a transoid con-

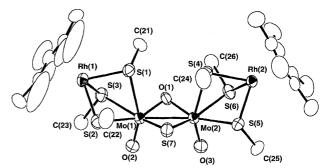


Fig. 3. An ORTEP drawing (50% ellipsoids) of [{Cp*Rh- $(\mu\text{-SCH}_3)_3\text{MoO}$ }₂ $(\mu\text{-O})(\mu\text{-S})$] (3) with atomic labeling scheme.

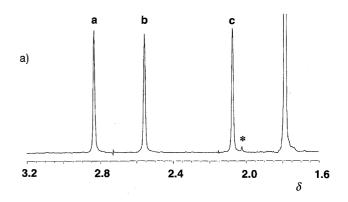
figuration has been found in the $(\mu\text{-}oxo)$ dimolybdenum-(VI) complexes, and the core has the expected structural parameters. ^{19f,19h,19i,19j,19m} The Mo centers in **1** adopt a distorted octahedral geometry completed by three sulfur atoms and one bridging and two terminal oxygen atoms. The O_t –Mo– O_b angles range from $104.3(7)^\circ$ to $105.8(8)^\circ$. The two Mo atoms are bridged by a single oxygen atom (Mo1–O1 = 1.91(1) and Mo2–O1 = 1.86(1) Å).

Two sets of three bridging μ -SCH₃ ligands are disposed in the anti-clockwise (for the μ -SCH₃ ligands bridging Rh-(1)···Mo(1)) or in the clockwise (for those bridging Rh-(2)···Mo(2)) orientations with respect to the methyl groups, when one views along the Rh···Mo axes from the Rh sites (complex 1 is a kind of diastereoisomers toward either enantiomer of (anti & anti) and (clockwise & clockwise)).

It is found that the intramolecular contacts between methyl groups and terminal oxo atoms: $C23\cdots O2 = 3.12(3)$ Å, $C22\cdots O3 = 3.02(3)$ Å, $C25\cdots O4 = 3.08(3)$ Å, and $C26\cdots O5 = 2.96(3)$ Å. These interatomic distances are below the sum of the van der Waals radii (3.4 Å).

Molecular Structure of 2 and 3. As shown in Figs. 2 and 3 complexes **2** and **3** have an analogous structure in a *syn* arrangement, but they have the different bridging atoms: a $di(\mu$ -oxo)dimolybdenum(V) core in **2** and a $(\mu$ -oxo)(μ -sulfido)dimolybdenum(V) one in **3**. The diamagnetic nature of **2** and **3** is accounted for by strong interactions between two Mo^V centers (d^1-d^1) with the Mo–Mo distances of 2.564(1) Å for **2** and 2.666(1) Å for **3**. The structure parameters of the cores fall within the range of those for the dimolybdenum complexes whose structures were confirmed by X-ray analyses to date. 19a,19b,19c,19e,19h,19i,19j,19m

The three μ -SCH₃ ligands bridge the Rh and Mo centers to form the $Cp^*Rh(\mu-SCH_3)_3MoO$ moieties with the Rh···Mo distances of 3.466(2) and 3.471(1) Å for 2 and 3.480(1) and 3.477(1) Å for **3**. For both complexes two sets of the three μ -SCH₃ ligands are disposed in the anticlockwise direction with respect to the Rh...Mo axes. Their enantiomers with clockwise arrangements equally exist in the crystals. The Rh-S(CH₃) distances are shorter compared to the Mo-S(CH₃) distances: the Rh-S(CH₃) distances range from 2.351(2) to 2.391(3) Å and the Mo-S(CH₃) distances 2.548(2) to 2.736(3) Å for 2. The same tendency is observed for **3** (the Rh–S(CH₃) distances of 2.360(2)—2.379(2) Å and the Mo-S(CH₃) distances of 2.556(2)—2.734(2) Å). The Mo-S(CH₃) bonds trans to the terminal oxygen atoms are longer by ca. 0.1—0.2 Å compared to those trans to the bridging oxygen or sulfur atoms, which is due to the stronger trans influence of the terminal oxygen atoms.


As observed in 1, intramolecular contacts between the methyl groups and terminal oxo, bridging oxo and bridging sulfido ligands are also seen for 2 and 3. The average interatomic distances are the $C\cdots O_t = 3.02$ Å and $C\cdots O_b = 3.16$ Å for 2, and the $C\cdots O_t = 3.03$ Å, $C\cdots O_b = 3.10$ Å, and $C\cdots S_b = 3.39$ Å for 3.

NMR Studies. Solution properties of the tetranuclear complexes have been investigated by 1 H, 13 C, and 17 O NMR spectroscopy. Variable-temperature 1 H and 13 C NMR spectroscopy indicates that these tetranuclear complexes are fluxional in nonaqueous media (CDCl₃, CD₂Cl₂, C₂D₄Cl₂, C₂D₂Cl₄, C₆D₅NO₂, and C₆D₅Cl). Line-shape analysis of the 1 H NMR signals of μ -SCH₃ for complexes **2** and **3** was carried out using a computer program based on a modified Bloch equation with the three-site exchange model 15 and using the spectrum measured in C₆D₅Cl at 10 $^{\circ}$ C as the low-temperature limit spectrum (the static spectrum).

In the case of 3, two specific sets of μ -SCH₃ resonances (comprising of three singlets each) were determined by trialand -error procedures so as to reproduce the observed spectra with a given rate constant in the whole temperature range (10 to 120 °C). In this way, the two sets of three singlets at $\delta = 2.86$ (resonance d), 2.83 (f), and 2.07 (i) and those at $\delta = 2.85$ (e), 2.69 (g), and 2.13 (h) were taken as the exchange couples (see Fig. 4 with the signal labeling: Almost the same results was obtained from the line shape analyses of either set).

At lower temperatures, **2** and **3** show simple NMR spectral patterns as expected from the crystal structures. While **1** exists as two isomers in solution, ⁸ one of which is consistent with the species found in the crystal structure. Unfortunately, we do not have any structural information of the other species. Both isomers show concerted and complicated line broadening in ¹H NMR signals of μ -SCH₃. Thus, we discuss here the solution dynamic properties only for **2** and **3**.

Variable-Temperature ¹H NMR Spectra. ¹H NMR spectra of the methyl region for **2** and **3** in C_6D_5Cl at 10 °C are shown in Fig. 4 with the signal numbering. Due to the existence of the pseudo two-fold axis through the center of the plane surrounded by the $Mo_2(\mu$ -O)₂, **2** shows only three singlets from the μ -SCH₃ ligands at δ = 2.84 (resonance a), 2.56 (b), and 2.08 (c) with the equal intensity, and an addi-

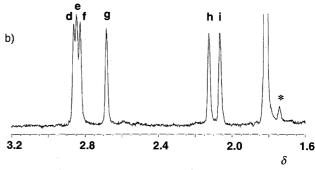


Fig. 4. ¹H NMR spectra of $[\{Cp^*Rh(\mu-SCH_3)_3MoO\}_{2}-(\mu-O)_2]$ (2) (a) and $[\{Cp^*Rh(\mu-SCH_3)_3MoO\}_{2}(\mu-O)-(\mu-S)]$ (3) (b) in C_6D_5Cl at 10 °C with signal numbering scheme. Resonances at $\delta=1.78$ for 2 and $\delta=1.81$ for 3 are due to Cp^* methyl groups. Signals with * are due to impurities.

tional singlet from the Cp* rings at $\delta = 1.78$ (Fig. 4a). In the case of 3 that has two different bridging ligands between Mo atoms (O and S), all μ -SCH₃ ligands are nonequivalent and thus six singlets are observed at $\delta = 2.86$ (resonance d), 2.85 (e), 2.83 (f), 2.69 (g), 2.13 (h), and 2.07 (i), along with a Cp* singlet at $\delta = 1.81$ (Fig. 4b). This chemically nonequivalent nature for the methyl groups indicates that no methyl inversion at the sulfur centers²¹ of μ -SCH₃ occurs. Higher-temperature ¹H NMR spectra of complexes 2 and 3 in C₆D₅Cl are displayed in the left side of Figs. 5 and 6, respectively. With increasing temperature, the three separated μ -SCH₃ resonances in 2 at lower temperatures broaden until they coalesce to give a single broad resonance at 90 °C $(\delta = \text{ca. } 2.5)$. At higher temperatures, more sharp resonance is obtained. For 3, the line-broadening becomes evident at about 60 °C, and as temperature increases further, the six signals collapse and merge into a single peak at δ = ca. 2.6 over 80 °C. This temperature-dependent behavior is fully reversible.

This averaging process can be explained by assuming that intramolecular rotations of the "Cp*Rh(μ -SCH₃)₃" frag-

ments occur about the Mo centers, not by the methyl inversion which may leads to the different spectral changes from those shown in Figs. 5 and 6: The three signals in 2 do not coalese with one another and the six signals in 3 merge into three signals by this inversion. This fluxional behavior may be approximated to a three-site exchange process with equally populated, uncoupled sites. 15 Calculated spectra and rate constants are shown in the right side of Figs. 5 and 6. In the case of 3, two specific combinations of three exchange singlets are chosen for the analysis as mentioned before. Eyring plots are shown in Fig. 7, giving good straight lines for both complexes. Activation parameters and rate constants are tabulated in Table 3. It is apparent that almost the same values are obtained for 2 and 3; activation enthalpies lie in the range +68.7 to +80.2 kJ mol⁻¹, while the activation entropies show relatively small negative or positive values, -11.3 to +22.3 J K⁻¹ mol⁻¹. It seems that activation parameters are not dependent on solvents used. The small entropic contributions strongly suggest that the exchange process is intramolecular.

¹⁷O NMR. To gain more insight into the solution be-

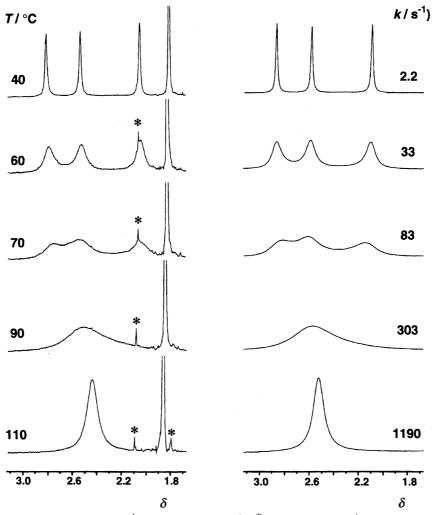


Fig. 5. Observed (left) and calculated (right) 1H NMR spectra of $[\{Cp^*Rh(\mu-SCH_3)_3MoO\}_2(\mu-O)_2]$ (2) in C_6D_5Cl at various temperatures together with rate constants. A resonance at $\delta = ca$. 1.8 is due to Cp^* methyl groups. Signals with * are due to impurities.

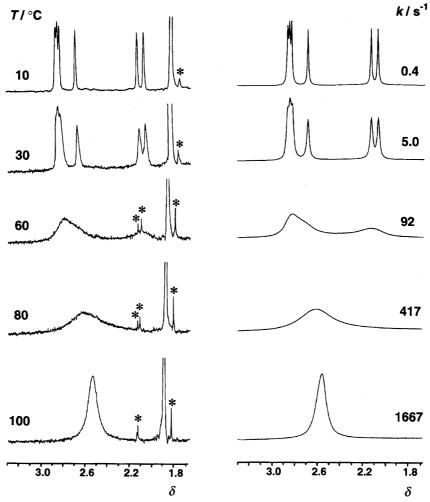
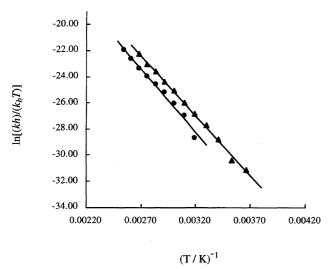
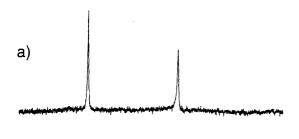



Fig. 6. Observed (left) and calculated (right) 1H NMR spectra of $[\{Cp^*Rh(\mu-SCH_3)_3MoO\}_2(\mu-O)(\mu-S)\ (3)$ in C_6D_5Cl at various temperatures together with rate constants. A resonance at $\delta = ca$. 1.8 is due to Cp^* methyl groups. Signals with * are due to impurities.

havior of 2 and 3, 17 O NMR spectra were measured for the 17 O-enriched complexes of 2' and 3'.

Complexes 2' and 3' exhibit two and three 17 O-singlets,

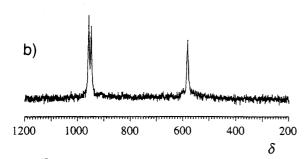

respectively (Fig. 8), as expected from their crystal structures. The assignments are made on the basis of the established correlations between higher-field shift of ¹⁷O-resonances and longer metal-oxygen bond distance (Table 4).²² In CDCl₃ two singlets of 2' at $\delta = 940$ ($W_{1/2} = 253$ Hz) and 598 ($W_{1/2}$ = 349 Hz) with the almost equal integrated intensity can be assigned to the terminal Mo-Ot oxygens and the bridging Mo-O_b-Mo oxygen, respectively. In CDCl₃ three singlets in 3' consist of two singlets for the terminal oxygens at $\delta = 956$ ($W_{1/2} = 304$ Hz) and 947 ($W_{1/2} = 324$ Hz) and one singlet for the bridging oxygen at $\delta = 582$ ($W_{1/2} = 399$ Hz). These ¹⁷O NMR spectral patterns clearly demonstrate that the dinuclear Mo frameworks of $OMo(\mu-X)(\mu-Y)MoO$ (X = Y = O for 2' and X = O, Y = S for 3') are retained in solution. The important thing is that no significant spectral change with temperature (23 to 120 °C in C₆D₅NO₂) was observed for either complex, except for the quadrupolar linenarrowing with increasing temperature.

Mechanism of Dynamic Process. From the results of the successful line-shape fitting by using the three-site exchange model and the ¹⁷O NMR spectroscopic study mentioned above, the averaging process of three or six meth-

Table 3. Activation Parameters and Rate Constants for $[\{Cp^*Rh(\mu-SCH_3)_3MoO\}_2(\mu-O)_2]$ (2) and $[\{Cp^*Rh(\mu-SCH_3)_3MoO\}_2(\mu-O)(\mu-S)]$ (3)

Complex	Solvent	$\Delta H^{\ddagger}/\mathrm{kJ}\mathrm{mol}^{-1}$	ΔS^{\ddagger} /J K ⁻¹ mol ⁻¹	$\Delta G^{\ddagger}_{298~\mathrm{K}}$ /kJ mol $^{-1}$
2	CDCl ₃	$+72.4 \pm 1.2$	+1.7±0.3	+71.9
	C_6D_5Cl	$+80.2\pm3.7$	$+22.1\pm2.3$	+73.6
	$C_2D_2Cl_4$	$+68.7 \pm 0.5$	-11.3 ± 0.4	+72.1
3 ^{a)}	$CDCl_3$	$+73.9 \pm 2.4$	$+22.3\pm0.7$	+67.3
	C_6D_5Cl	$+76.8 \pm 1.7$	$+21.1\pm1.4$	+70.5

a) Since this complex was unstable in $C_2D_2Cl_4$ at elevated temperature, the activation parameters were obtained only for $CDCl_3$ and C_6D_5Cl solutions.



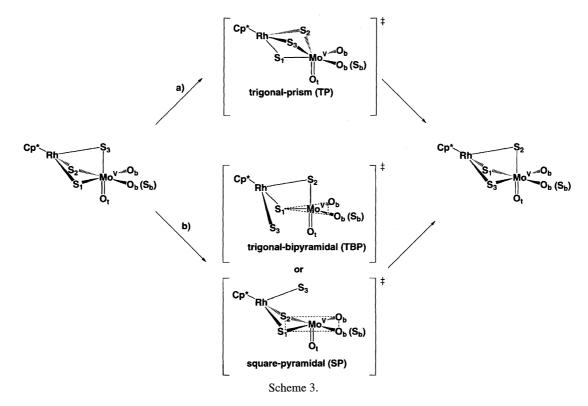

Fig. 8. 17 O NMR spectra of 2' (a) and 3' (b) in CDCl₃ at 23 $^{\circ}$ C.

Table 4. ¹⁷O NMR Data for 2' and 3' at 23 °C

Complex	Solvent	Chemical shift ^{a)} /ppm [W _{1/2} /Hz]		
		Mo-O _t	Mo-O _b -Mo	
2′	CDCl ₃ C ₂ D ₂ Cl ₄	940 [253] 933 [806]	598 [349] 606 [875]	
3′	CDCl ₃ C ₂ D ₂ Cl ₄	956 [304] 947 [324] 949 [1125]	582 [399] 587 [758]	

a) Chemical shifts are referenced to $\mathrm{D}_2\mathrm{O}$ externally by the sample replacement method.

yl resonances of **2** or **3** may be best described by the intramolecular rotations of the "Cp*Rh(μ -SCH₃)₃" moieties on the trigonal planes of the octahedral Mo centers. The pyramidal inversions of methyl groups at the sulfur centers, which are seen in tri(μ -SCH₃) complexes of [(η^7 -C₇H₃R¹₄)-Mo(μ -SR²)₃Mo(η^7 -C₇H₃R¹₄)] (R¹ = H or CH₃; R² = C₂H₅, (CH₂)₂CH₃, (CH₂)₃CH₃, C₆H₅ or CH₂C₆H₅),^{23a} [L₃Mo-

 $(\mu - SC(CH_3)_3)_3Mo(\eta^7 - C_7H_7)]$ (L = P(OCH₃)₃, P(CH₃)- $(C_6H_5)_2$, $P(CH_3)_2(C_6H_5)$, $P(CH_3)_3$, $P(CH_3)_3$, and $P(CH_3)_3$ $(\mu$ -SR)₃Mo $(\eta^7$ -C₇H₇)] (R = CH₃, C₂H₅, CH(CH₃)₂ or C(CH₃)₃)^{23c} and have relatively small activation free energy (ΔG^{\ddagger}) values around 50 kJ mol⁻¹, cannot explain the observed spectral changes. Possible intramolecular rearrangement processes for the present system are illustrated in Schemes 3a and 3b, based on the twist mechanism and the bond-rupture mechanism,²⁴ respectively. In the transition state, the former involves a six-coordinate trigonal prism (TP) Mo center, while the latter involves a five-coordinate trigonal bipyramidal (TBP) or a square pyramidal (SP) Mo center. Judging from the activation parameters (not so large ΔG^{\ddagger} values and small ΔS^{\ddagger} values, Table 3), the twist mechanism, Scheme 3a, seems to be more likely. Interestingly, it has been found that the μ -SR (R = CH₃ and C₆H₅) ligand in $[Cp_2Mo_2(\mu-SR)(CO)_4]^-$ on its trans-trans interconversion shows a very similar motion²⁵ to that for the individual μ -SCH₃ ligand in 2 or 3 when the twist mechanism works in the fluxional behaviors. However, the bond-rupture mechanism (Scheme 3b), which was found in the cis-trans isomerization of $[Cp_2Fe_2(CO)_2(\mu-SC_6H_5)_2]$, 21b still cannot be ruled out at this stage. It is possible that the rotation of the Rh fragments is initiated by the cleavage of the Mo-S bond trans to the terminal oxo ligands. This bond is longer by ca. 0.1 to 0.2 Å compared to the other two Mo-S bonds and may easily be cleaved in transition states.

Conclusion

Each reaction of the triple cubane-type cluster $[(Cp^*Rh)_4Mo_4O_{16}]$ with CH_3OH , 1, 2- $C_6H_4(SH)_2$, or CH_3SH brings about the rearrangement of the cluster framework in a different way. The CH_3OH molecule performs moderately the metal—oxygen bond rearrangement maintaining the cubic M_4O_4 framework. On the other hand, 1, 2- $C_6H_4(SH)_2$ reconstructs the cluster framework, separating the organorhodium and oxide parts. The reactivity of the CH_3SH molecule is intermediate between them. Under certain reaction conditions described in this paper, the reactions with CH_3SH give three linear-type tetranuclear complexes 1—3, which contain both two Mo and two Rh atoms. This may come from the differences in pK_a , coordination ability to the Rh and Mo atoms, and the bond energy of C-X (X = O, S) among CH_3OH , 1,2- $C_6H_4(SH)_2$, and CH_3SH .

These tetranuclear complexes were characterized and the solution dynamic properties of **2** and **3** were examined by line-shape analysis of the 1H NMR signals of $\mu\text{-SCH}_3$ using a modified Bloch equation with the three-site exchange model and reasonably accounted for by the unique intramolecular rotation of the Cp*Rh($\mu\text{-SCH}_3$)3 fragments on the trigonal planes of the Mo centers. This is the first example of complete averaging of triply-bridging $\mu\text{-SCH}_3$ ligands in complexes in solution.

Supporting Information Available: Full crystallographic data and refinement parameters, atomic coordinates, listings of bond distances and angles, anisotropic displacement parameters for 1—3 are deposited as Document No.

72031 at the Office of the Editor of Bull. Chem. Soc. Jpn.

This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas Nos. 10149101 and 09239104 from the Ministry of Education, Science, Sports and Culture. We are grateful to Dr. Shigetaka Koda (Fujisawa Pharmaceutical Company) for the X-ray data collection of 1.

References

- 1 a) C. L. Hill, *Chem. Rev.*, **98**, 1 (1998). b) K. Isobe and A. Yagasaki, *Acc. Chem. Res.*, **26**, 524 (1993). c) F. Bottomley and L. Sutin, *Adv. Organomet. Chem.*, **28**, 339 (1988). d) V. W. Day and W. G. Klemperer, *Science*, **228**, 533 (1985).
- 2 a) M. Ichikawa, W. Pan, Y. Imada, M. Yamaguchi, K. Isobe, and T. Shido, *J. Mol. Catal.*, A, **107**, 23 (1996). b) C. Zhang, Y. Ozawa, Y. Hayashi, and K. Isobe, *J. Organomet. Chem.*, **373**, C21 (1989). c) Y. Iwasawa, "Catalysis by Metal Complexes: Tailored Metal Catalysts," Reidel, Dordrecht, The Netherlands (1986).
- 3 a) G. Süss-Fink, L. Plasseraud, V. Ferrand, S. Stanislas, A. Neels, H. Stoeckli-Evans, M. Henry, G. Laurenczy, and R. Roulet, *Polyhedron*, 17, 2817 (1998). b) K. Nomiya, C. Nozaki, A. Kano, T. Taguchi, and K. Ohsawa, *J. Organomet. Chem.*, 533, 153 (1997). c) Y. Hayashi, F. Müller, Y. Lin, S. M. Miller, O. P. Anderson, and R. G. Finke, *J. Am. Chem. Soc.*, 119, 11401 (1997). d) V. W. Day, W. G. Klemperer, and D. J. Main, *Inorg. Chem.*, 29, 2345 (1990). e) R. G. Finke, D. K. Lyon, K. Nomiya, S. Sur, and N. Mizuno, *Inorg. Chem.*, 29, 1784 (1990). f) H. K. Chae, W. G. Klemperer, and V. W. Day, *Inorg. Chem.*, 28, 1423 (1989).
- 4 a) S. Takara, T. Nishioka, I. Kinoshita, and K. Isobe, *J. Chem. Soc.*, *Chem. Commun.*, **1997**, 891. b) M. Abe, K. Isobe, K. Kida, and A. Yagasaki, *Inorg. Chem.*, **35**, 5114 (1996). c) M. Abe, K. Isobe, K. Kida, A. Nagasawa, and A. Yagasaki, *J. Cluster Sci.*, **5**, 565 (1994). d) Y. Hayashi, Y. Ozawa, and K. Isobe, *Inorg. Chem.*, **30**, 1025 (1991). e) H. Akashi, K. Isobe, Y. Ozawa, and A. Yagasaki, *J. Cluster Sci.*, **2**, 291 (1991). f) Y. Hayashi, Y. Ozawa, and K. Isobe, *Chem. Lett.*, **1989**, 425.
- 5 Y. Hayashi, K. Toriumi, and K. Isobe, *J. Am. Chem. Soc.*, **110**, 3666 (1988).
- 6 Y. Do, X.-Z. You, C. Zhang, Y. Ozawa, and K. Isobe, *J. Am. Chem. Soc.*, **113**, 5892 (1991).
- 7 R. Xi, M. Abe, T. Suzuki, T. Nishioka, and K. Isobe, *J. Organomet. Chem.*, **549**, 117 (1997).
- 8 R. Xi, B. Wang, Y. Ozawa, M. Abe, and K. Isobe, *Chem. Lett.*, **1994**, 323.
- 9 R. Xi, B. Wang, M. Abe, Y. Ozawa, and K. Isobe, *Chem. Lett.*, **1994**, 1177.
- 10 R. Xi, B. Wang, K. Isobe, T. Nishioka, K. Toriumi, and Y. Ozawa, *Inorg. Chem.*, 33, 833 (1994).
- 11 R. Xi, Ph.D. Thesis (No. Kou-122-Go), 1995, "Transformation of Framework of Triple Cubane-Type Rh–Mo Oxide Cluster by Using Mercaptans: Dynamic Behavior of Linear-Type Tetranuclear Complexes in Solution," The Graduate University for Advanced Studies, Hayama, Japan. The preparation and X-ray analysis of $[(Cp^*Rh)_2(\mu-SCH_3)_3]_2[Mo_6O_{19}]$ are reported in the thesis.
- 12 C. White, A. Yates, and P. M. Maitlis, *Inorg. Synth.*, **29**, 228 (1992).
- 13 This solid appears to contain polyoxometalates of $[(Cp^*Rh)_2(\mu\text{-SCH}_3)_3]_4[Mo_8O_{26}]^{10}$ and $[(Cp^*Rh)_2(\mu\text{-SCH}_3)_3]_4-[Mo_6O_{19}]^{11}$ on the basis of IR spectra.
 - 14 a) G. M. Sheldrick, C. Kruger, and R. Goddard, "Crystal-

lographic Computing 3," Oxford University Press, Oxford (1985), pp. 175—189. b) T. Sakurai and K. Kobayashi, *Rigaku Kenkyusho Hokoku*, **55**, 69 (1979).

- 15 J. Sandström, "Dynamic NMR Spectroscopy," Academic Press, Yew York (1982), pp. 18—25.
- 16 Dimethyl sulfide $(CH_3S)_2$ was detected by ¹H NMR spectrum ($\delta = 2.40$) for the CD₃OD solution containing $[(Cp^*Rh)_4Mo_4O_{16}]$ and CH₃SH.
- 17 p $K_a = 10.7$ for CH₃SH (J. A. Dean, "Lange's Handbook of Chemistry," 14th ed, McGraw-Hill, Inc., New York (1992), Sects. 8, 8.19) and p $K_a = 15.5$ for CH₃OH (J. A. Riddick, W. B. Bunger, and T. K. Sakano, "Techniques of Chemistry," 4th ed, John Wiley & Sons, New York (1986), Vol. 2, Organic Solvents, p. 191).
- 18 a) W. D. Jones and R. M. Chin, *J. Am. Chem. Soc.*, **116**, 198 (1994). b) B. C. Wiegand and C. M. Friend, *Chem. Rev.*, **92**, 491 (1992). c) S. Luo, A. E. Ogilvy, T. B. Rauchfuss, A. L. Rheingold, and S. R. Wilson, *Organometallics*, **10**, 1002 (1991). d) C. M. Friend and J. T. Roberts, *Acc. Chem. Res.*, **21**, 394 (1988). e) R. J. Angelici, *Acc. Chem. Res.*, **21**, 387 (1988).
- 19 a) H. Adams, L. J. Gill, and M. J. Morris, *J. Chem. Soc.*, *Dalton Trans.*, **1998**, 2451. b) M. Cindric, D. M. Calogovic, V. Vrdoljak, and B. Kamenar, *Struct. Chem.*, **9**, 353 (1998). c) R. Hazama, K. Umakoshi, A. Ichimura, S. Ikari, Y. Sasaki, and T. Ito, *Bull. Chem. Soc. Jpn.*, **68**, 456 (1995), see several references therein. d) K. Unoura, Y. Fukase, Y. Sato, N. Chida, and H. Ogino, *Bull. Chem. Soc. Jpn.*, **67**, 3122 (1994). e) T. Shibahara, *Coord. Chem. Rev.*, **123**, 73 (1993). f) K. S. Bürger, G. Haselhorst, S. Stötzel, T. Weyhermüller, K. Wieghardt, and B. Nuber, *J. Chem. Soc., Dalton Trans.*, **1993**, 1987. g) R. H. Holm, *Coord. Chem. Rev.*, **100**, 183 (1990). h) F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry," 5th ed, John Wiley & Sons, New York (1988), pp. 824—831. i) C. D. Garner and J. M. Charnock, "Comprehensive Coordination Chemistry," ed by G. Wilkinson, R. D. Gillard, and J.

- A. McCleverty, Pergamon Press, Oxford (1987), Vol. 3, Part 36.4, pp. 1329—1374 and E. I. Stiefel, Vol. 3, Part 36.5, pp. 1375—1420. j) R. H. Holm, *Chem. Rev.*, **87**, 1401 (1987). k) K. Saito and Y. Sasaki, *Adv. Inorg. Bioinorg. Mech.*, **1**, 179 (1982). l) E. I. Stiefel, *Prog. Inorg. Chem.*, **22**, 1 (1977). m) B. Spivack and Z. Dori, *Coord. Chem. Rev.*, **17**, 99 (1975).
- 20 S. Stötzel, K. Wieghardt, and B. Nuber, *Inorg. Chem.*, **32**, 2128 (1993).
- 21 a) E. W. Abel, S. K. Bhargava, and K. G. Orrell, *Prog. Inorg. Chem.*, **32**, 1 (1984). b) S. D. Killops and S. A. R. Knox, *J. Chem. Soc.*, *Dalton Trans.*, **1978**, 1260. c) E. W. Abel, G. W. Farrow, K. G. Orrell, and V. Sik, *J. Chem. Soc.*, *Dalton Trans.*, **1977**, 42.
- 22 a) C. J. Besecker, W. G. Klemperer, D. J. Maltbie, and D. A. Wright, *Inorg. Chem.*, **24**, 1027 (1985). b) M. Filowitz, R. K. C. Ho, W. G. Klemperer, and W. Shum, *Inorg. Chem.*, **8**, 93 (1979). c) W. G. Klemperer, *Angew. Chem.*, *Int. Ed. Engl.*, **17**, 246 (1978).
- 23 a) M. L. H. Green and D. K. R. Ng, *J. Chem. Soc.*, *Dalton Trans.*, **1993**, 11. b) I. B. Benson, S. A. R. Knox, P. J. Naish, and A. J. Welch, *J. Chem. Soc.*, *Dalton Trans.*, **1981**, 2235. c) I. B. Benson, S. A. R. Knox, P. J. Naish, and A. J. Welch, *J. Chem. Soc.*, *Chem. Commun.*, **1978**, 878.
- 24 a) J. D. Atwood, "Inorganic and Organometallic Reaction Mechanisms," 2nd ed, VCH, New York (1997), Chap. 7, pp. 231—271. b) R. H. Holm, "Dynamic Nuclear Magnetic Resonance Spectroscopy," ed by L. M. Jackman and F. A. Cotton, Academic Press, New York (1975), pp. 317—376. c) C. S. Springer, Jr., J. Am. Chem. Soc., 95, 1459 (1973). d) J. G. Gordon, II, and R. H. Holm, J. Am. Chem. Soc., 92, 5319 (1970). e) E. L. Muetterties, J. Am. Chem. Soc., 90, 5097 (1968). f) C. S. Springer, Jr., and R. E. Sievers, Inorg. Chem., 6, 852 (1967).
- 25 P. Schollhammer, F. Y. Pétillon, S. Poder-Guillou, J. Talarmin, K. W. Muir, and D. S. Yufit, *J. Organomet. Chem.*, **513**, 181 (1996).